
International Journal of Scientific & Engineering Research Volume 2, Issue 7, July-2011 1
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Automating the Diagram Generation Process
Tabinda Sarwar, Uzma Arif, Wajiha Habib, Samana Zehra

Abstract— Diagrams are the key to modeling and designing software. These diagrams enable us to understand, visualize and
communicate the concepts, user requirements and functionality that the software would support. Drawing diagrams or models
manually and then modifying them later is time taking hence various software tools have been developed for automating this
process. This paper discusses the existing tools and presents an algorithm for a software “Auto-Diagram Generator” (ADG) for
generating diagrams which is better and more flexible than the existing ones. ADG allows users to generate Block diagrams,
Flowcharts and ER diagrams by form-filling and by text selection. The algorithm is extended to generate ER diagrams building
blocks (entities and attributes) by reading a database. Any diagramgeneration software is incomplete without providing a
manual support for editing the generated diagrams.

Index Terms— Automation, Block Diagram, Diagram Generation, Drag and Drop, ER Diagram, Flow Chart, Form Filling, Text
Selection.

—————————— ——————————

1 INTRODUCTION
IAGRAMS play a significant role in software analy-
sis and design. Diagrams are not only a good way of
communicating and clarifying customer require-

ments but they also help in designing and visualizing the
target software to be developed. Examples of commonly
used diagrams are flow charts, block diagrams, organiza-
tional chart for displaying the organizational structure,
network diagram of an organization, ER diagrams, dia-
grams that represents trend and relationships like bar
chart, pie chart, graphs.

Among the above mentioned diagrams block diagrams
are very commonly used in software design, electronic
design, hardware design etc.

“Block diagram is a diagram of a system, in which the
principal parts or functions are represented by blocks
connected by lines, that shows the relationships of the
blocks” [1]. It captures high level details of a system and is
not concerned with low level (implementation) details.

Another commonly use diagram, that is used to depict
the steps in a process is the flow chart. A flow chart is a
graphical or symbolic representation of a process. Each
step in the process is represented by a different symbol
and contains a short description of the process step. The
flow chart symbols are linked together with arrows show-
ing the process flow direction [2].

Flowcharts are used in analyzing, designing, docu-
menting or managing a process or program in various
fields [3].

In today’s business world, databases are of utmost im-
portance, because they hold and represent data of an or-
ganization and Entity Relationship Modeling (ER model-
ing) is by far the most common way to express the analyt-
ical result of an early stage in the construction of a new
database [4]. In software engineering ER diagrams are
used to model data conceptually.

Because of the importance and frequent use, these are
the three diagrams targeted by ADG and they can be gen-
erated in different ways (mentioned above), keeping in

view the ease of use.

2 EXISTING DIAGRAM GENERATORS
Currently, there are many software available that gener-
ate different types of diagrams ranging from business to
technical. Taking into account the tools that generate flow
charts, block diagram and ER diagram, most of these
tools use the drag drop approach. Very few of them use
the concept of reading a text file (based on a special syn-
tax that represents the diagram specifications) and none
of them use the form filling approach used by the auto
diagram generator.

Moreover, there are usability issues with most of the
existing tools and they are not very user friendly. Some
softwares are so complex that people with little or no
knowledge avoids them and instead prefer using simple
softwares like Paint.

ADG is simple and user friendly as compared to the
other tools and allows diagram generation by form filling,
as form filling is one of the easiest way for a novice user
to specify the diagram requirements.

3 SYSTEM ARCHITECTURE
As mentioned earlier user can interact with ADG in dif-
ferent ways, for all of these ways the basic internal archi-
tecture of ADG remains the same (Figure 1). The “Dia-
gram Generator and Editor” is the core component of this
architecture. Another important component is the Data-
base Access component that plays a vital role in generat-
ing diagram from database directly. The Document Han-
dling Component performs document handling functions
e.g. save, open, new, exit etc. the component for interact-
ing with the printer, as indicated by its name, is responsi-
ble for printing of ADG’s documents.

D

International Journal of Scientific & Engineering Research Volume 2, Issue 7, July-2011 2
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Figure 1. System Architecture of ADG

3.1Diagram Generator and Editor
This component is responsible for generating diagram based
on user inputs, and eventually when diagram is edited the
same component is active. DGE uses three different algo-
rithms two of them are presented below. The approaches for
generating diagrams from form-filling, text selection and from
database are based on this component.

3.1.1 Algoritm that uses Drag Drop Methodolgy
Before explaining any of the algorithms this must be kept
in mind that it is event-based software i.e. it will be res-
ponding to various key and mouse events.
 The general algorithm for DGE is presented below that
generates diagram by drag drop methodology and also
supports diagram editing. The diagram is represented as
bitmap image.
 On Initialization (before drawing begins)
 DrawingImage (bitmap image) is initialized as empty image

 Mode = none
 ListsNode = Empty

 On selecting a button for graphical object that has to be drawn
 Mode = draw
 If (mouse left button is depressed/down and without move-
ment is released)
 Draw default sized shape
 End If
 If (mouse left button is depressed/down and moved to a lo-

cation and then released)
 Draw shape from first point to the new specified point
 End If

 On releasing the left button of the mouse
 Add shape to the Link List
 Mode = none

 If (mouse left button is down and the Mode != Draw)
 If (Cursor is on a graphical object)
 Find selected graphical object
 If (current point is a part of the shape)
 Mode = select
 Current object is selected
 Tracker of selected graphical object is drawn
 Update DrawingImage
 End If
 End If
 End If

 Else
 DrawingImage is Refresh
 End Else

 If (mouse is moving and mouse’s left button is depressed)
If (mode == select)
 If (Cursor is inside graphical object)
 Move selected object to new location
 Update selected object in link list
 Redraw tracker of selected object
 Update DrawingImage
 Mode = none
 End If
 ElseIf (Cursor is on the rectangles of tracker image)
 Resize object to new location
 Update selected object in link list
 Update DrawingImage
 Draw tracker of selected object

Mode = none
 End Else If
 End If
 Else
 Refresh DrawingImage
 End Else
 End If

3.1.2 Algorithm that uses Form-Filling Methodology
The below mentioned algorithm generates diagram by form
filling, which is a unique feature of ADG.

 Select shape (from a drop down list).
 Enter Text for the shape.
 Hit “Add New Element” Button (if more shapes are to be

added to the diagram)
 Otherwise hit the “Click” Button.
 Integers “X” and “Y” are initialized with (0,0) position.
 On hitting the “Click” Button

o New node is created in the link list
 If list is empty, a list head is created with

next and previous elements initialized with
null.

 Else a list tail is created with next element in-

International Journal of Scientific & Engineering Research Volume 2, Issue 7, July-2011 3
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

itialized with null.
o Shapes and their respective text are added to the

Link List.
o Their positions (x and y coordinates) are specified by

proper increments and decrements in “X” and “Y”.
 DrawingImage is updated.
 Repaint DrawingImage.

For connecting the graphical objects following steps are

followed:
 Select one graphical object “g1”
 Select second graphical object “g2’
 Press button to create the connecting line.
 A line is drawn from “g1” tracker image rectangle” cen-

ter_Right” to “g2” tracker image rectangle “cen-
ter_Left”.

 A new node is created for line in the link list and point
“center_Right” and “center_Left” are stored in the node.

 If list is empty, a list head is created with next and pre-
vious elements initialized with null.

 Else a list tail is created with next element initialized
with null.

 Update DrawingImage.
 Repaint DrawingImage.

 These algorithms can be extended to generate basic enti-
ties and attributes of ER diagram from reading a database
directly.

3.1.3 Algorithms that generates Entities and
attributes from the Database

The below mentioned algorithm also resides on the DGE
component.
 Enter server name.
 Enter database name.
 Create connection with the database

o If connection.open() is successful then connection
is created.

o Else report connection failure and return.
o Total number of tables “count” is extracted from

the database.
o A loop for “i” continues from i=0 to i<count

Start

o Store each table in array “TABLE” as TABLE[i]

o Extract the total number of attributes “att_count”
from TABLE[i].

o A loop for “j” that continues till “att_count”
 Start

 Store attributes of each table in two
dimensional array “ATTRIBUTE”
as ATTRIBUTE[i][j].

 If ATTRIBUTE[i][j]==primary key
of TABLE[i]

 Set “Primary” array entry as Prima-
ry[i]=ATTRIBUTE[i][j]

 End
 End

 Initialize x=0, y=0 and z=0
 A loop that continue from i=0 to i<count (total num-

ber of tables)
 Start

o If(x = DrawingImage.X or x > DrawingImage.X)
o Set x=0
o Set y=200
o EndIF
o New node”Ent” for TABLE[i] is created in the
link list

 If list is empty, a list head is created with
next and previous elements initialized with
null

 Else a list tail is created with next element
initialized with null.

 Ent.text=TABLE[i]
 Ent.location = (x, y)
 Ent.shape = Rectangle
 Ent.size = (width=50, height=50)
 z = y + 100

o New node ”Att” for Primary[i] is created in the link
list.

 If list is empty, a list head is created with
next and previous elements initialized with
null.

 Else a list tail is created with next element
initialized with null.

 Att.text = Primary[i]
 Att.text = Primary[i]
 Att.location = (x, z)
 Att.shape = Ellipse
 Att.size = (width=50, height=50)

o New node “line” for connecting entity and attribute
is created in list

 If list is empty, a list head is created with
next and previous elements initialized with
null.

 Else a list tail is created with next element
initialized with null.

 line.start = point (Ent.X + (Ent.Width / 2),
Ent.Y + Ent.Height)

 line.end = point (Att.X + (Att.Width / 2),
Att.Y)

 End
 Update DrawingImage
 Repaint DrawingImage

The database tables and its attributes can be easily retrieved
by using OLEDB libraries.

4 SUMMARY
ADG provides different ways to generate diagrams,
which makes it usable for a wide range of users. Because
of its flexible and efficient algorithm ADG can be ex-
tended to accommodate many different diagrams.

International Journal of Scientific & Engineering Research Volume 2, Issue 7, July-2011 4
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

REFERENCES
[1] SEVOCAB, “Software and Systems Engineering Vocabu-

lary,”BlockDiagram,
http://pascal.computer.org/serv_display/search.action,jsessio
nid=D67885F1679F640CAC6C54EE187A6480. April 2011.

[2] Nicholas Hebb, Flow Chart
 http://www.breezetree.com/articles/what-is-a-flow-
chart.htm. April 2011.

[3] SEVOCAB, “ Software and Systems Engineering Vocabulary,”
http://pascal.computer.org/sev_display/search.action;jsession
id=989BD03B195021410505EFB99050FCFF. April 2011.

[4] Peter Chen, “Entity Relationship Modeling,”
http://www.devarticles.com/c/a/Development-
Cycles/Entity-Relationship-Modeling/. April 2011.

